喝酒竟然增强记忆?不不,这不是好事

装修宝典010

喝酒竟然增强记忆?不不,这不是好事,第1张

喝酒竟然增强记忆?不不,这不是好事
导读:生活不易,小编叹气。只能写写资讯聊以 *** 了。小编整理了半天,给大家带来了这篇文章。下面一起让我们去吃瓜围观吧。酒对身体的伤害,我们学术经纬苦口婆心地介绍过很多。除了大家都知道的喝酒伤肝,最新的一些研究证据揭示,酒精还破坏干细胞,会加速诱发大

生活不易,小编叹气。只能写写资讯聊以 *** 了。小编整理了半天,给大家带来了这篇文章。下面一起让我们去吃瓜围观吧。

酒对身体的伤害,我们学术经纬苦口婆心地介绍过很多。除了大家都知道的喝酒伤肝,最新的一些研究证据揭示,酒精还破坏干细胞,会加速诱发大量基因突变,即便少量饮酒也增加癌症风险。

▲喝酒没有“适量”一说,“小酌”也会诱发大量基因突变

虽然常劝大家少喝酒、别喝酒,然而喝酒一时爽,戒酒不容易。顶尖学术期刊《自然》最近发表的一项新研究,展示了酒精影响大脑的一种途径。科学家发现,酒精经过肝脏代谢,会迅速调控大脑的基因表达,影响学习和记忆功能。而这很可能是一些人酒瘾易发的背后原因。

这项研究由美国宾夕法尼亚大学佩雷尔曼医学院的表观遗传学教授Shelley Berger博士领衔。

科学家们通过同位素标记实验和质谱法,追踪酒精及其分解产物在小鼠体内的位置。他们发现,摄入的酒精在肝脏经过分解后,代谢产生的乙酸盐会进入大脑。

随后,在学习和记忆的中枢——海马区和前额叶皮质,研究人员发现,基因的组蛋白乙酰化受到了影响。

这是什么意思呢?在细胞的细胞核内,DNA长链缠绕在组蛋白上,共同组成紧密的染色质。组蛋白乙酰化的过程就是在组蛋白上附着乙酰基。这个过程会让染色质结构在特定位置松开。就像书本打开才能看到书中的字词,染色质松开后基因才可以被“读取”,进而制造基因所编码的蛋白。

这支研究团队此前发表在《自然》上的另一项工作显示,神经元内组蛋白乙酰化的过程直接受到一种关键代谢酶的影响,名为ACSS2。这种酶结合在染色质上,“当场”把乙酸盐转化为可以沉积在组蛋白上的乙酰基,进而影响与记忆有关的关键基因。

▲细胞核内,ACSS2促进组蛋白乙酰化,调控基因表达

“过去的工作让我们了解到,代谢因子ACSS2是产生新记忆所必需的。”之一作者Phillips Mews博士说。而在摄入酒精后,由于血液内的乙酸盐含量迅速升高,在ACSS2的作用下,神经细胞内快速发生乙酰化。

这是否意味着,酒精引起的基因表达变化最终会影响与喝酒相关的记忆呢?为了验证这个猜想,研究人员设计了一组实验来检测小鼠的行为。

他们在小鼠的生活环境中放上不同的“饮料”,有的隔间是酒精,有的隔间是生理盐水。经过一段时间的训练,当小鼠可以自由活动时,它们对不同空间表现出来的喜好十分明显:待在“酒吧”的时间更长。相比之下,大脑中ACSS2蛋白水平被人为降低的小鼠,对酒精和生理盐水没有明显偏好。换句话说,由于ACSS2对基因表达的调控,喝过酒的小鼠加强形成了与酒精相关的记忆。

▲酒精通过ACCS2影响了小鼠对空间的偏好

“这个结果很重要,”Mews博士解释,因为在很多有酗酒成瘾、酒精依赖等问题的人当中,“酒精相关线索的记忆是酒瘾复发的主要驱动因素。”有些人明明戒酒很久,路过曾经熟悉的酒吧就功亏一篑、旧病复发,可能就是这个原因。

因此研究人员认为,在治疗酗酒者时, ACSS2这种代谢酶或许可作为一个有希望的干预靶点。

值得一提的是,尽管在这项研究中,酒精是提供乙酸盐的主要来源,但作者在论文最后指出,其他乙酸盐来源也可能以类似方式参与大脑组蛋白乙酰化并影响大脑功能,比如肠道微生物就是一个来源——肠菌,怎么又是你?

欲要知晓更多喝酒竟然增强记忆?不不,这不是好事》的更多资讯,请持续关注深空的科技资讯栏目,深空小编将持续为您更新更多的科技资讯。王者之心2点击试玩

第168场演唱会 1999年08月28日

十万青年站出来 演唱会 2000年08月12日

2000年08月19日

2000年08月26日

你要去哪里?台湾巡回演唱会 2001年08月18日

2001年08月25日

2001年09月01日

天空之城复出演唱会 2003年08月16日

恒星的恒心 万人免费演唱会 2003年11月22日

Final Home 当我们混在一起世界巡回演唱会

2004年12月25日

2005年01月08日

2005年03月19日

知足常乐同学会

2005年08月28日

2005年10月30日

2005年09月11日

Final Final Home

2006年07月22日

2006年07月23日

le Power天使.为爱而生全台巡回演唱会

2007年01月06日

2007年01月13日

2007年01月28日

2007年02月03日

2007年02月04日

2007年02月10日

2007年02月11日

2007年02月24日

2007年02月25日

2007年02月28日

2007年03月10日

离开地球表面世界巡回演唱会

2007年07月20日

2007年07月21日

2007年07月22日

突然很想见到你演唱会 2008年01月01日

回到地球表面世界巡回演唱会 2008年05月17日

五万人出头天新歌飙唱演唱会

2008年12月13日

2008年12月14日

其他:

人海茫茫:暂别乐坛演唱会 2001年9月7日 新加坡

天空之城复出演唱会 2003年10月22日 新加坡

五月天拥抱上海演唱会 2004年6月13日 上海

Final Home 当我们混在一起世界巡回演唱会

2005年2月19日 美国洛杉矶

2005年2月20日 美国圣荷西

2005年10月22日 上海

2005年11月5日 北京

2005年12月10日 新加坡

2006年1月7日 成都

2006年1月14日 马来西亚吉隆坡

2006年1月20日 日本大阪

2006年5月1日 香港

离开地球表面世界巡回演唱会

2007年5月4日-5月5日 香港

2007年5月19日 厦门

2007年6月2日 新加坡

2007年7月7日 广州

2007年8月4日-8月5日 北京

2007年8月24日 加拿大多伦多

2007年8月26日 美国洛杉矶

2007年9月1日 加拿大温哥华

2007年9月30日 长沙

2007年10月7日 日本东京

2007年10月13日 成都

2007年10月20日 上海

2007年12月15日 天津

2008年4月19日 马来西亚云顶

回到地球表面世界巡回演唱会

2008年4月26日 新加坡

2008年4月30日 上海

2008年5月31日 香港

2009年

1月1日 台湾,桃园跨年演唱会。

2月21日 在澳门威尼斯人,五月天和丁当、梁静茹、品冠一起举行了相亲相爱演唱会。

3月20日 宣布启动世界巡回演唱会“DNA五月天创造演唱会”,并与跨国团队合作,首次增加澳洲站。

3月29日 台北,举办“AND 同党万岁 五月天 and Friends”演唱会。

4月17日 上海,举办“不准不开心”小型表演。

4月19日 南宁,举办“不准不开心”小型表演。

5月20、21、22日 香港,举办“五月天 2009 DNA 世界巡回演唱会”共三场。(场馆:红磡体育馆)

5月28日 澳洲,举办世界巡回演唱会第二站。

7月3、4日 上海,举办世界巡回演唱会第三站。

7月11日 北京,举办世界巡回演唱会第四站。

8月1日 哈尔滨,举办世界巡回演唱会第五站。

8月21日 杭州,举办世界巡回演唱会第六站。

8月28、29日 新加坡,“五月天 DNA 创造新加坡”演唱会。

9月24、25、26、27日 台北,五月天DNA台北演唱会,共四场。

10月6日 南京,五月天DNA南京演唱会。

10月17日 佛山,五月天DNA佛山演唱会。DNA视觉大餐

DNA视觉大餐(20张)10月31日 重庆,五月天DNA重庆演唱会。

11月21日 广州,五月天DNA广州演唱会。

12月5日 台南,“五月天高雄55555”演唱会。

12月12日 郑州,五月天DNA郑州演唱会。

12月13日 广州,五月天河源歌友会。

12月24日 上海,五月天圣诞演唱会。

12月26日 长沙,五月天DNA长沙演唱会。

12月31日 台北2010跨年演唱会倒计时压轴表演。

2010年

1月13日 五月天参加厦门卫视、两岸电视媒体联手 *** 的《欢喜大围炉——2010两岸闽南话春晚》的录制。

4月4日 纽约,五月天DNA海外巡回场。(场馆:康州金神大赌场体育馆)

4月10日 洛杉矶,五月天DNA海外巡回场。(场馆:洛杉矶环球影城,成为该影城献唱华语之一人)

4月11日 旧金山,五月天DNA海外巡回场。

4月17日 新加坡,五月天DNA海外巡回场。(场馆:国家体育场)

4月24日 厦门,五月天DNA厦门演唱会。(场馆:厦门体育中心体育场)

5月02日 北京,五月天DNA北京演唱会。(场馆:北京工人体育场)

5月14日 墨尔本,五月天DNA海外巡回场。(场馆:澳洲网球公开赛场)

5月16日 悉尼,五月天DNA海外巡回场。(场馆:悉尼娱乐中心)

5月22日 武汉,五月天DNA武汉演唱会(场馆:武汉汉口文化体育中心)

5月28、29、30、31日 香港,五月天“变形DNA无限放大版”演唱会,共四场。(场馆:红磡体育馆)

6月5日 吉隆坡,五月天“变形DNA无限放大版”演唱会。(场馆:武吉加里尔室内体育馆)

6月26日 西安,五月天“变形DNA无限放大版”演唱会。(场馆:陕西省体育场)

7月10日 南京,五月天“变形DNA无限放大版”演唱会。(场馆:南京五台山体育场)

7月24日 台中,五月天“变形DNA无限放大版”演唱会。(场馆:台中体院体育场)

8月14日 五月天领军压轴的“超犀利趴”演唱会昨天在小巨蛋登场,台上台下纷纷穿起人字拖,9支乐团接力开唱,超过8小时的马拉松表演,创下小巨蛋演唱会时间最长纪录,这次以平均票价1400元的低票价策略吸引歌迷,票房冲破9成多,收入超过1200万,也让钗独立乐团首度唱进小巨蛋。

10月18日 五月天获得第十届CCTV-MTV音乐盛典,台湾地区更佳乐团奖。

12月24、25日 上海圣诞演唱会。(地点:上海大舞台)

12月31日 五月天参加2011台北最HIGH新年城跨年演唱会。

2011年

1月1日 五月天湖南卫视快乐大本营“神马都给力2011”。

3月12日 五月天参加湖南卫视快乐大本营。

5月1日 北京鸟巢 滚石30周年北京演唱会

5月20日至23日 香港红磡体育馆一连四场Just rock it就是演唱会

12月16日 第八张全创作专辑《第二人生》正式发行

12月23至25日、29日至次年元旦 一连7场台北小巨蛋 2012年五月天“诺亚方舟”世界巡回演唱会全新起航

12月31日 2012台北最HIGH新年城跨年演唱会 开场表演嘉宾。在长达半个小时的表演之后又空降小巨蛋诺亚方舟演唱会和歌迷一起倒数新年的来临

2012年

3月3日 台中体育场「Just Love It 我不愿让你一个人」慈善公益演唱会 当晚共捐出1800万台币

4月29日至30日 五月天“诺亚方舟”世界巡回演唱会北京鸟巢旗舰版 创造2场共19万人记录

5月9日至5月15日 香港红磡体育馆 一连举办六场诺亚方舟世界巡回香港站演唱会

太多了,很多小型的都不记得了,估计他们自己也数不过来吧,每次大型巡演都是四五十场的。

DNA(脱氧核糖核酸)是核酸的一类,因分子中含有脱氧核糖而得名。

DNA分子极为庞大(分子量一般至少在百万以上),主要组成成分是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胞嘧啶脱氧核苷酸和胸腺嘧啶脱氧核苷酸。DNA存在于细胞核、线粒体、叶绿体中,也可以以游离状态存在于某些细胞的细胞质中。大多数已知噬菌体、部分动物病毒和少数植物病毒中也含有DNA。

除了RNA(核糖核酸)和噬菌体外,DNA是所有生物的遗传物质基础。生物体亲子之间的相似性和继承性即所谓遗传信息,都贮存在DNA分子中。1953年,詹姆斯·沃森和弗朗西斯·克里克描述了DNA的结构:由一对多核苷酸链相互盘绕组成双螺旋。他们因此与伦敦国家工学院的物理学家弗雷德里克·威尔金斯共享了1962年的诺贝尔生理学或医学奖。

50年前发现DNA双螺旋结构的功臣

新华网 ( 2003-04-23 16:34:41 ) 稿件来源: 北京日报

1953年2月28日中午,剑桥大学的两位年轻的科学家弗朗西斯·克里克和詹姆斯·沃森步入老鹰酒吧,宣布他们的发现:DNA是由两条核苷酸链组成的双螺旋结构。

这家著名的酒吧位于剑桥大学国王学院斜对面,酒吧的标志是一只展开翅膀的老鹰,英文名字就叫The Eagle Pub。现在酒吧门口专门有一个介绍这段历史的牌子。当时沃森和克里克在剑桥大学非常普通,甚至有些不得志,沃森才25岁,克里克也不过37岁。他们甚至连一

个正式宣布成果的场合都很难找到,到酒吧宣布如此伟大的一项发现总给人一种滑稽的感觉,幸好剑桥人的素质很高,当时并没有人把他们当成疯子轰走。沃森和克里克成名后,他们出场做报告都受到隆重接待,只不过他们讲解和宣布的内容再没有像发现DNA双螺旋结构这么重大。

物理学家的小册子《生命是什么》开拓了生命科学研究的广阔领域

DNA双螺旋结构的发现得益于一本科普小册子《生命是什么》,它的作者是量子力学奠基人之一奥地利物理学家薛定谔(1887年-1961年)。

长期以来,人们从许多初步实验中发现生物体之间的遗传性是由一个因子决定的,但一直不知道究竟是什么因子在决定这一现象。在20世纪上半叶,很多物理学家把目光投向了生命现象,希望能从物质层次揭示生命的奥秘。1944年薛定谔出版了《生命是什么》的小册子,用通俗的语言阐明了用物理学的新观点研究生命现象的重要性,他从生物学已有的研究成果中引申出许多新的课题,如遗传信息是怎样编码等,认为最终要靠物理学和化学 *** 研究解决。

《生命是什么》的出版,在年轻的科学家中产生了巨大的影响,被誉为从思想上唤起生物学革命的小册子。正在剑桥大学攻读物理学博士学位的克里克深读了这本小册子之后,从中品味到生物学广阔的领域需要物理学家参与共同开拓,他深信用自己掌握的物理学知识有助于生物学的研究,便毅然转向了生物学。无独有偶。美国青年学者沃森(1928年-)也受《生命是什么》的影响,从书中悟出联结原子、分子与生命本质之间的关键因素是基因,预言能解开基因携带遗传信息的化学物理密码的人将成为有卓越贡献的科学家。

当时,生物学家开始自由地用基因这个词,表示基因学信息的最小单位这个概念,但他们还不知道基因究竟是什么。1951年的秋天,沃森在剑桥大学首次遇见了克里克。他们两个一拍即合,相见恨晚,立即开始合作,决心搞清楚什么是DNA。1953年初,沃森和克里克受到伦敦大国王学院科学家成果的启发,沃森回忆道:“突然间,我脉搏加快,思如泉涌,眼前出现了一幅画面:DNA的结构要比许多人想象的简单许多,它应该是螺旋型的。”

不过,DNA的双螺旋结构这一发现在公众中并没有引起重视。1953年4月25日英国《自然》杂志发表了这一成果。20天后,他们所在的剑桥大学卡文迪研究室主任劳伦斯布拉格爵士在一个演讲中提到了这个发现,被媒体报道,这才引起公众的关注。在这一成果问世50周年之际,很多国家在举办各种纪念活动,媒体也利用这一机会开展科普工作。

不过,关于这一成果的生日是1953年2月28日还是4月25日仍有争论。按照国际学术界惯例,一项成果必须经过同行评审后在学术杂志上正式发表才能被视为正式宣布,这样做为的是防止有人钻空子随便宣布获得重大成果造成混乱。因此,尽管沃森和克里克2月28日就在老鹰酒吧宣布了这一成果,但包括英国官方机构在内的很多机构把今年4月25日作为DNA双螺旋结构发现50周年庆祝日。

双螺旋结构之母是未获诺贝尔奖的女科学家罗莎琳德·富兰克林

1962年,沃森和克里克与莫里斯·威尔金斯一起因为发现DNA双螺旋结构赢得了诺贝尔奖。威尔金斯的贡献在于为沃森和克里克的发现提供了实验证据。不过,今年3月我在剑桥国王学院参加活动时,主办方的英国文化委员会一位新闻官正式发表了演讲,在介绍到DNA双螺旋结构发现50周年纪念活动时,她激动起来,大声地说:“我们不能忘记罗西,她在发现DNA双螺旋结构过程中做出了主要贡献,应当获得诺贝尔奖!”

女科学家罗莎琳德·富兰克林

这是科学史上的一桩著名公案。罗西是英国伦敦大学国王学院的一名女科学家,全称为罗莎琳德·富兰克林(1920年-1958年)。在发现DNA双螺旋结构过程中,沃森所说受到的最关键的启发就是基于富兰克林的成果。

富兰克林是一位非常优秀的实验科学家。她用X射线衍射DNA晶体得到了影像,从而分辨出了这种分子的维度、角度和形状。她发现DNA是螺旋结构,至少有两股,其化学信息面朝里。这已经非常接近真理。不过,富兰克林非常有个性,经常对人进行直言不讳地尖锐批评,沃森和克里克也尝过她的苦头。此外,在20世纪50年代,英国学术界排外思想严重,因此富兰克林作为一名犹太人,一个女人,再加上脾气率直,自然不被学术界所包容。因此,1962年,沃森和克里克获得诺贝尔奖时发表演说根本没有提到她。而本应属于她的荣誉落到了她在伦敦大学国王学院的对手威尔金斯身上。

沃森在1968年出版的《双螺旋》一书中,透露了威尔金斯曾偷偷复制富兰克林的研究成果并提供给他,其中就包括了现在众所周知的她证明螺旋结构的X射线图像。如果没有富兰克林的X射线成果,要确定DNA的螺旋结构几乎是不可能的。

由于长期受X射线的影响,1958年富兰克林因卵巢癌去世,享年37岁。沃森和克里克早先一直没有承认她对DNA贡献的真正原因是,他们根本没有告诉她,他们用了她的研究成果。沃森最后满怀感情地写道:“现在有必要阐述一下她所取得的成就……我与克里克都极为赞赏她那正直的品格和宽宏大量的秉性。只是在多年之后,我们才逐渐理解了这位才华横溢的妇女。她为了取得科学界的承认进行了长期的奋斗,而这个世界往往把妇女仅仅看作是研究工作之余的一种消遣玩物。在意识到自己的生命垂危时,她没有叹息和抱怨。直到去世前的几个星期,她还在不遗余力地从事着高水平的工作。富兰克林这种勇敢的精神和高贵的品质是值得我们学习的。”

沃森今天说:基因隐私和基因歧视是基因研究和应用面临的两个严重问题

沃森和克里克现在很少露面。今年4月14日中午,在美国华盛顿人类基因组序列图完成发布会现场,美国联邦国家人类基因组研究项目负责人弗朗西斯·柯林斯博士隆重宣布,人类基因组序列图绘制成功,人类基因组计划的所有目标全部实现。当DNA双螺旋结构发现者之一詹姆斯·沃森来到华盛顿发布会现场时,这位头发花白的资深科学家立即引起与会者的关注和欢迎。沃森在发布会上回顾了基因研究的历史,并指出基因隐私和基因歧视是当前基因研究和应用领域面临的两个严重问题。

回顾历史,我们看到,DNA双螺旋结构的发现,使分子生物学得以诞生。50年来,生命科学和生物技术迅速发展,人类基因组图谱和水稻基因组图谱先后绘制成功,继1996年克隆羊多利问世后,各种克隆动物纷纷诞生,而一些转基因动植物也已经走进寻常百姓家。这一系列重大成果是人类献给新世纪的一份厚礼,标志着生命科学又向纵深迈进一步,它将推动基因组测序工作、功能基因的研究和基因技术的应用,从而推动整个生物技术的发展,也将对科技发展、经济发展以及整个社会产生深远影响。此外,以包括人自身为对象的生命科学研究,给人类的未来展示了美好的前景,在迎接生命科学不断取得的新突破的同时,如何充分考虑到这些突破可能带来的负面影响、让它们更大限度地造福人类,已成为新世纪之初摆在我们面前的一项迫切课题。

生命科学新的里程碑:DNA双螺旋结构发现前前后后

新华网 ( 2003-04-23 16:43:30 ) 稿件来源: 科技日报

丰富多彩、引人入胜的生命现象,历来是人们最为关注的课题之一。在探索生物之谜的历史长河中,一批批生物学家为之奋斗、献身,以卓越的贡献扬起生物学“长风破浪”的航帆。今天,当我们翻开群星璀璨的生物学史册时,不能不对J·沃森(JinWatson)、F·克里克(FrancisCrick)的杰出贡献,予以格外关注。50年前,正是这两位科学巨匠提出了DNA双螺旋结构模型的惊世发现,揭开了分子生物学的新篇章。如果说十九世纪达尔文进化论在揭示生物进化发展规律、推动生物学发展方面,具有里程碑意义的话,那么,DNA双螺旋结构模型的提出,则是开启生命科学新阶段的又一座里程碑。由此,人类开始进入改造、设计生命的征程。

诚然,生物科学的每一次突破都是其自身发展到一定阶段的产物,是不同学科新理论、新技术相互渗透融合的结果,但勿庸置疑,它首先是科学家个人创造性劳动的宝贵结晶。今天,了解DNA双螺旋结构模型产生的背景、条件,以及对生物学发展产生的积极影响,对我们深刻认识这一重大发现的科学价值,正确把握现代生命科学发展的规律和方向,是大有裨益的。正是基于这一认识,笔者撰写了这篇短文,权作对DNA双螺旋结构模型提出50周年的纪念。

浩繁纷杂的生物尽管千差万别,但不论囊桓鲋掷啵�幼钚〉牟《局敝链笮偷牟溉槎�铮�己廖蘩�獾乜梢园炎约旱男宰匆淮�淮�卮�氯ィ欢�蘼矍状�胱哟��故亲哟�鞲鎏逯�洌�侄嗌僮芑嵊行┎畋穑�幢闶撬��ヒ膊焕�狻H嗣窃�谩爸止系霉希�侄沟枚埂焙汀耙荒干�抛樱�抛痈鞅稹保���蜗蟮馗爬�舜嬖谟谝磺猩�镏械恼庖蛔匀幌窒螅�⑽�铱�糯�⒈湟熘�战�辛瞬恍傅呐�Α

17世纪末,有人提出了“预成论”的观点,认为生物之所以能把自己的性状特征传给后代,主要是由于在性细胞( *** 或卵细胞)中,预先包含着一个微小的新的个体雏形。精原论者认为这种“微生体”存在于 *** 之中;卵原论者则认为这种“微生体”存在于卵子之中。但是这种观点很快为事实所推翻。因为,无论在 *** 还是卵子之中,人们根本见不到这种“雏形”。代之而来的是德国胚胎学家沃尔夫提出的“渐成论”。他认为,生物体的任何组织和器官都是在个体发育过程中逐渐形成的。但遗传变异的操纵者究竟是何物?仍然是一个谜。

直到1865年,奥地利遗传学家孟德尔在阐述他所发现的分离法则和自由组合法则时,才之一次提出了“遗传因子”(后来被称作为基因)的概念,并认为,它存在于细胞之内,是决定遗传性状的物质基础。

1909年,丹麦植物学家约翰逊用“基因”一词取代了孟德尔的“遗传因子”。从此,基因便被看作是生物性状的决定者,生物遗传变异的结构和功能的基本单位。

1926年,美国遗传学家摩尔根发表了著名的《基因论》。他和其他学者用大量实验证明,基因是组成染色体的遗传单位。它在染色体上占有一定的位置和空间,呈直线排列。这样,就使孟德尔提出的关于遗传因子的假说,落到具体的遗传物质———基因上,为后来进一步研究基因的结构和功能奠定了理论基础。

尽管如此,当时人们并不知道基因究竟是一种什么物质。直至本世纪40年代,当科学工作者搞清了核酸,特别是脱氧核糖核酸(简称DNA),是一切生物的遗传物质时,基因一词才有了确切的内容。

1951年,科学家在实验室里得到了DNA结晶;

1952年,得到DNAX射线衍射图谱,发现病毒DNA进入细菌细胞后,可以复制出病毒颗粒……

在此期间,有两件事情是对DNA双螺旋结构发现,起了直接的“催生”作用的。一是美国加州大学森格尔教授发现了蛋白质分子的螺旋结构,给人以重要启示;一是X射线衍射技术在生物大分子结构研究中得到有效应用,提供了决定性的实验依据。

正是在这样的科学背景和研究条件下,美国科学家沃森来到英国剑桥大学与英国科学家克里克合作,致力于研究DNA的结构。他们通过大量X射线衍射材料的分析研究,提出了DNA的双螺旋结构模型,1953年4月25日在英国《发现》杂志正式发表,并由此建立了遗传密码和模板学说。

之后,科学家们围绕DNA的结构和作用,继续开展研究,取得了一系列重大进展,并于1961年成功破译了遗传密码,以无可辩驳的科学依据证实了DNA双螺旋结构的正确性,从而使沃林、克里克同威尔金斯一道于1962年获得诺贝尔医学生理学奖。

现代生物学研究业已搞清,核酸是由众多核苷酸组成的生物大分子。核苷酸主要有四种类型,它们按不同的顺序排列,构成了含有各种遗传信息的核酸分子。基因就是核酸分子(主要是DNA)中含有特定信息的核苷酸片断。

在对生物的遗传物质进行深入研究,并不断取得进展的同时,自然界中的大量生命现象和实验中的许多实验结果,也给生物学工作者以有益的启示。

比如,大肠杆菌是一个品系繁多的大家族,有上万种不同的类型。有的品系因缺少指导合成某些特殊营养物质的基因,因而必须从培养基中直接摄取这些营养物质方能生活。这些大肠杆菌被称作营养缺陷型。如大肠杆菌K不能合成苏氨酸(T)和亮氨酸(L);而它的另一个品系则不具备合成生物素(B)和甲硫氨(M)的能力。把这两种大肠杆菌的任何一种单独放在缺少TLBM的培养基上都不能生长。但是,当把这两种大肠杆菌混合在一起,放到缺少上述四种物质的培养基上,却奇迹般地长出了新菌落。这是什么原因呢?前面已经说过,大肠杆菌K中缺少T、L两种基因,却含有B、M两种基因;而另一个品系的DNA上,尽管不具备B和M基因,却含有K中缺少的T、L两种基因。当把它们放在一起大量培养时,前一品系细胞中的DNA有可能通过细胞膜进入后一品系的细胞中,使两种类型的DNA之间进行重新组合,形成同时含有BMTL四种基因的大肠杆菌新类型。其实,上面这种细菌间的杂交现象并不是仅仅在生物学家专门设计的营养缺陷型实验中才能进行,在自然状态下的许多细菌中同样存在,只不过数量太少,一般不易被人们发现罢了。

上述DNA的转移,主要是靠细胞之间的接触实现的,无需借助外力的帮助。但是,也存在另一种情况,DNA的转移和重组,是在第三者的介入下完成的。如噬菌体的转导就是一个典型的例证。

噬菌体是专门侵染细菌和放线菌的一类病毒。它体积小,结构简单,除六角形头部含有DNA外,周身披有一个起保护作用的外壳和一个蝌蚪状的尾巴。侵染细菌时,先从自身尾部分泌出一种溶菌酶,将菌体某处的细胞壁溶解,然后再把头部的DNA经由这个缺口送入细菌体内。噬菌体侵染细菌的过程有两种类型。一种叫烈性感染,即侵入菌体内的噬菌体DNA立即进行自我复制,产生新的DNA和蛋白质外壳,然后分泌溶菌酶使菌体细胞壁裂解,释放出新的噬菌体;另一种类型叫温和感染,即噬菌体DNA进入菌体细胞后,并不立即进行自我复制,而是插入到被感染菌体细胞的染色体内,潜伏下来。当细菌染色体进行自我复制时,它也跟着复制,并随染色体一同悄悄地进入子细胞内。可是一遇到紫外光照射等外来 *** ,温和噬菌体的DNA就会立即脱离细菌染色体,迅速复制,进而使菌体裂解,释放出新的噬菌体。生物学工作者用温和噬菌体去感染有鞭毛的沙门氏杆菌,并通过紫外光照射促使侵入菌体内的噬菌体DNA迅速复制,释放出成熟的噬菌体,然后再用它们去感染无鞭毛的沙门氏菌,结果使无鞭毛细菌长出了鞭毛。其原因在于,当温和噬菌体侵染有鞭毛的沙门氏菌,进行自我复制时,阴差阳错地误把菌体细胞中决定鞭毛性状的DNA片断,也裹进了自己的蛋白质外壳内,而当它们再去感染无鞭毛的沙门氏菌时,就把这种决定鞭毛性状的DNA片断带进了无鞭毛的沙门氏菌中,以至出现了使无鞭毛的菌长出鞭毛的怪事。这种现象叫“转导现象”。这一实验不仅再次证明,生物细胞中的DNA可以从一个细胞转移到另一个细胞,而且表明,在实现这种转移的过程中,噬菌体是一种理想的运载工具。

既然DNA是决定生物性状的主要遗传物质,在自然界中又存在着DNA的转移和重组,并且还有噬菌体等充当基因的运载工具,那么,能不能设法把不同生物细胞中的DNA分子分离出来,进行体外切割,以获得我们需要的某些特定基因;或者人工合成某些基因片断,然后再按照预先设计好的方案,让基因重新组合,通过一定的运载手段,把重组体重新送回到生物体细胞内,并使它的功能表达出来,从而突破远缘杂交的障碍,按照人们的意志改造生物、创造出新的品种呢?

如前所述,大肠杆菌是人类最熟悉的微生物之一。大肠杆菌细胞质中的质粒是一种环状DNA,出入细胞较为容易。加之它结构简单,繁殖快,易于培养,所以大肠杆菌自然就成了基因工程研究的对象和理想的操作工具。1969年,美国生物学家夏皮洛等人首先用生物学 *** ,从大肠杆菌的质粒环状DNA片断上人工分离出了基因。三年之后,美国科学家科恩,首次把两个大肠杆菌的质粒从细胞中分离出来,在体外让质粒中的DNA分子重新进行组合,然后再送回大肠杆菌中,使其成功地获得表达,从而之一次实现了基因操作。

自此以后,基因工程获得了如火如荼的发展,取得了一个个振奋人心的突破,宛如升起在科学上空的瑰丽明星,令人神往。今天,我们已经可以用基因操作突破种间壁垒,实现各种生物遗传性状的重组,基因工程已成为生物技术的核心技术,广泛应用于医药健康和各个产业部门。放眼未来,它在造福人类中的作用是无可 *** 的。前景诱人,任重道远,让我们为之奋斗努力吧! (徐九武)

有一部英国拍摄的影片让我看了感到惊喜,这就是根据英国真实案件改编的影片《凶手密码》。影片描述的是DNA之一次被用于处理司法案件的故事,当时是1985年,在英国,当时一名移民儿童的身世受到怀疑,借助DNA技术确认了他的身份,使母子免予被人为分隔的命运。影片重点叙述了DNA在刑事案件的首次应用,那是在1986年,当时在英格兰由于这项技术的应用使一个供认有罪的男子被发现是无辜的,并使真凶浮出水面。

令人叹为观止的DNA指纹术在司法案件的应用

影片《凶手密码》细致再现了英国应用DNA技术的一起真实的刑事案件(影片将部分当事人的真实姓名隐去):1983年12月22日早晨7时20分,15岁的琳达·曼宁的尸体被人在通往一家精神病院的路边草丛里发现。她腰部以下身体 *** ,据了解是前天晚上去看朋友的路上被扼死的,死后还被人 *** 过。从尸体里提取的 *** 表明凶手分泌遗传基因是A型带有高浓度磷酸葡萄糖变位酶(ICM)的H酶,这样的人在成人男子中只占10%。调查首先在附近一家精神病机构卡顿·海斯医院展开,但排查以失败告终,后来 *** 才发现他们实际上询问过那个凶手,但当时并没有意识到他就是凶手。1986年7月5日下午,另一个受害者道恩·阿什沃思失踪了,她也是15岁, 是恩德比学校的学生。两天之后,在发现琳达·曼宁尸体的地方发现了阿什沃思的尸体,她被人撕成碎片,现场令人毛骨悚然。 *** 检验的结果表明,琳达·曼宁和道恩·阿什沃思死于同一人之手。道恩·阿什沃思遇害后,卡顿·海斯医院的一个厨房勤杂工理查德·巴克兰受到怀疑。理查德·巴克兰头脑简单,身体早熟,样子有点呆傻,有时躲在黑暗处突然跳出来吓唬妇女和年轻姑娘,因此名声很坏,当时 *** 排除了对他的怀疑。1986年夏天,警方将其带到警署,对他进行讯问。经过两天杂乱无章和自相矛盾的供述,最终他在供词上签了字,承认自己杀了道恩·阿什沃思。不过,经过血液检验,他不属于携带磷酸葡萄糖变位酶H酶分泌基因为A型的人。1986年11月21日,莱斯特机构的研究人员阿里·杰弗雷博士,从凶手的 *** 里提取DNA,然后将它与那个厨房勤杂工的血液样品相比照。他得出结论:理查德·巴克兰是无辜的。沮丧的警方随后想到一个大海捞针的办法,打算对当地男子进行一次大规模的测试。1987年初, *** 决定请该地区16岁到34岁的年轻男子献出血样和唾液,经过化验,属于A/PGM1+分泌者血型的样本则被送往内政部法庭技术室进行DNA检测。从1981年1月到9月,有4583名男子接受了检测,但警方没有获得成功。1987年8月1日那天,4个面包店的工人聚集在莱斯特酒吧喝酒,其中一个人谈到一个名叫科林·皮奇福克(Colin Pitchfork)的雇员曾经威胁他去做血液测试,生性害羞、性格软弱的他用伪造的证件,以科林·皮奇福克的名义抽取了血液样品;另一个男子也提到,皮奇福克曾经答应如果他愿意做替身去接受测试给他200英镑(合300美元),但他拒绝了。皮奇福克解释说,他因为曾被指控有不体面的暴露害怕去做测试,担心警方跟他过不去。有一个女人坐在一张桌子旁听到这个消息后,到警方报案。1987年9月19日,27岁的科林·皮奇福克在小托伦被捕。警方的计算机资料显示皮奇福克有“露阴癖”,而且曾经去过那家精神病院看过门诊。警方拘捕皮奇福克后检测了他的血样,他的血样被送到杰弗雷的实验室,DNA检测结果表明,他正是 *** 并谋杀琳达·曼宁和道恩·阿什沃思的凶手。1988年1月22日,科林·皮奇福克被裁决有罪并被判终身监禁。

这部影片揭示:DNA技术在确认真正的罪犯和发现无辜者方面发挥了令人叹为观止的作用,许多成功的案例对人们运用这一技术起到了鼓舞作用。在《凶手密码》这部影片中, DNA技术洗刷了一个人的犯罪嫌疑,特别是当这个人的犯罪嫌疑由其有罪的供述而得到强化时,它的意义就更加显著了。一个被告人可能会因为各种各样的原因而违心承认自己的犯罪(如本案中的巴克兰,他明显是一个怯懦者),如果没有DNA技术帮了大忙,很有可能被错误定罪。因此,美国“一些州已经颁布法律要求定罪后进行DNA检测,并且一些州已经扩充或废止了对DNA证据在哪些地方适用进行限制的法令,其他一些州也正在立法过程中”。

精确的DNA技术也会出现应用错误

在我国,古时进行确认个人身份依靠的是滴血验子的老法子,这种 *** 并不是靠得住的 *** ,但在我国科技不发达的古代,却成为司法中进行人身识别的常用 *** 。纪昀《阅微草堂笔记》云:“按陈业滴血,见《汝南先贤传》,则自汉已有此说。”即使在古时,亦已认识到滴血之法不是可靠的办法。纪昀转述诸老吏的说法曰:“骨肉滴血必相合,论其常也。或冬月以器置冰雪上,冻使极冷;或夏月以盐醋拭器,使有酸咸之味:则所滴之血,入器即凝,虽至亲亦不合。故滴血不足为信谳。”由于个人人身识别在许多案件中具有举足轻重的作用,鉴定错了,案件的认定和处理就很有可能跟着一起错。

在当代,个人识别依靠DNA检测,DNA鉴定技术(又称DNA指纹术)是公认的较为精确的技术,在个人识别方面被认为无可争议。有人称DNA的发现是科学上里程碑式的发现,在科学史上是世纪性标志。DNA在刑事司法中的应用也是革命性的。美国哲学教授苏珊·哈克就美国刑事司法中该技术的应用评价说:“当半个世纪前DNA首次被鉴定为基因物质时,谁能够想象到,DNA分析现在会在刑事司法审判系统以及公众对法律的理解中扮演这种角色呢?即使是20年前,法庭科学家仅仅能够断定一个血样是否是人的或动物的、雄性的或雌性的,并且,如果是人的,那么是哪种血型——在美国人中,拥有最少见血型的人有3%,血型最普通的占43%。DNA分析已经使得更加精确的鉴定成为可能(据称,美国联邦调查局实验室推测,将莱温斯基裙子上的污迹与克林顿的 *** 随机匹配的可能性有787万亿分之一)。美国于1986年将其首次引入刑事案件,它将司法审判公正的威力变得相当惊人,截至2002年春,DNA检测使得超过100名的囚犯被证明无罪,包括相当数量的死囚区的囚犯在内。”

不过,执法人员和司法人员对于自己的认识能力抱有足够的警惕的同时,对于科学技术手段形成的鉴定意见也不能不加警惕的照单全收。DNA鉴定主要有两种 *** :一是STR分型,就是平时所称DNA检验,能够对人进行个体识别,进行同一认定;二是线粒体DNA测序,不能同一认定,可用于否定,不可用于肯定。不了解DNA检测的基本知识,就有可能在采择证据时有所失误。更为致命的是,DNA技术虽为较为精确的技术,但鉴定人员缺乏责任心,鉴定工作缺乏精确性,甚至迎合性地为委托方提供其期待的意见,再精确的技术也不能必然保证有精确的结论。在美国,1989年卡斯特罗案件中威尔玛·庞塞与其两岁 *** 双双被刺死,嫌疑人卡斯特罗被捕, *** 在他的手表上发现了血渍,该血渍的DNA图谱显示与被害人的相符,不过,此案在预审中发现许多实验过程的错误:未进行种属实验,额外的谱带未被报告,对女儿的检测结果显示了额外的未被报告的谱带,受到污染的探针被重复使用却没有被记录,相互差距高于标准偏差三倍的谱带仍被标为匹配,未按照规定进行盲测,没有使用阴性对照或没有记录对照样品来源。这些因素造成DNA证据失去证据能力。

在我国,也发现多起DNA检测错误,引起社会广泛瞩目的河北李久明、山西岳兔元案件的DNA鉴定皆有失误。还有其他一些不如这些案件知名的案件,也已经发现存在DNA鉴定的错误。例如新疆曾经发生一起离奇案件:2004年7月13日,雷香国失踪,雷香国的家人向当地派出所报警,后又在报纸上刊登寻人启事。7月24日中午,雷香国的姐姐雷红接到陌生人的 *** ,来电说哈拉玉宫乡的一条水渠里发现了一具男尸,由于没人报案和认领,已经埋掉,死者外形与报纸刊登的照片相像。雷红立即与库尔勒市公安局联系,前去辨认尸体。那具尸体在水中浸泡变形,埋入地下后又浑身是土,挖出来已难以辨认,雷香国的父亲雷伍富见到尸体后感到发型确实很像,但很难确定是否是其儿子。当晚警方对尸体进行解剖,库尔勒市公安局还通知雷伍富抽血,以便对无名尸体进行DNA鉴定。2004年8月24日,库尔勒市公安局下达的《鉴定结论通知书》称“有关人员对无名尸体与雷伍富血样,进行了DNA及无名尸体胃内容物鉴定,鉴定结论是无名尸体与雷伍富有血缘关系,累积亲权概率为99%,无名尸体胃内无有毒物质”。8月30日,雷伍富正式接到库尔勒市公安局的《鉴定结论通知书》,结论是“溺水死亡”。但警方并没有得出雷香国是否他杀的结论。2004年9月3日,巴州公安局刑侦支队在法医再次检验后,出具《死亡证明》和《火化证明》,尸体被火化。雷红怀疑弟弟的死跟一个叫苗苗的女人有关系,并提出疑问“我弟弟不会游泳,怎么会溺水死亡呢?”从雷香国手机通话记录中,雷红发现雷香国出事当晚确实找过苗苗,此后再没人见过他。雷红向库尔勒市公安局递交一份材料,请求警方调查。2004年9月19日,苗苗在乌鲁木齐市整容,准备与其母外逃,被库尔勒市公安局抓获。苗苗的父亲在青海省格尔木市也被抓获。令警方大跌眼镜的是,苗苗不仅交代了杀害雷香国的事实,还说出埋尸地点。2004年10月9日,警方在库尉公路一处戈壁滩挖出尸体,通知雷伍富前去抽血采样,雷香国的母亲也被采了血样。雷伍富和雷红还参加了死者衣物辨认,确认白色T恤、黑色裤子、黑色皮鞋,都是雷香国那天出门所穿,另外,雷香国的一根带玉的红绳也在。2005年1月6日,库尔勒市公安局下达《鉴定结论通知书》,结论是“雷香国尸体与其母施昌会的mtDNAHV区碱基序列一致”。鉴定结论认定这具尸体是雷香国,从而否认以前那具男尸是雷香国。为何两具尸体被鉴定为同一个人?库尔勒市公安局声称是机器故障,后来又说是样品受到了污染。

为什么会出现DNA检测的错误

原因是技术 *** 本身是可错的,苏珊·哈克提醒说:“ *** 以及实验室,都是可错的。例如,有时样本并不是被盲目呈现的,而是以一种期望得到肯定性证明的方式被提呈的。而且,DNA分析排除嫌疑人比识别犯罪人有更大的确定性,识别后者有时需要关于参考类别的机警假设。因此,我们几乎不奇怪于DNA证据不但是一种强大有力的证明无罪和鉴定有罪的工具,而且也具有非常令人迷惑的可能性(正如辛普森告诉我们大家的)。”DNA技术的可错性再加上其他因素,几乎不可避免地发生错误,这些因素主要有三个:

一是检材受到污染。由于对检材保管疏忽大意,依据受到污染的检材进行检测就难免偏离事实真相,形成检测结果的错误。苏珊·哈克指出:“假定检测是被严格进行的,一个无辜的被告人将不会与犯罪人有相同的DNA,但一个更低的却不容忽视的可能性就是实验室犯了错误或者样品被污染了。”

二是检测人员提供迎合性鉴定意见,DNA检测和其他鉴定一样,鉴定人员应当以科学态度为之,不能“友情鉴定”,但鉴定人员属于指派机关或者与指派机关属于同一系统的同体意识和长期接受同一委托单位的固定客户关系,会使个别鉴定机构及其人员丧失科学精神,从而提供迎合委托方或者指派者意愿的鉴定意见。不幸的是,鉴定人员不恪守客观原因的现象并非个别,检测室成为炮制证据的场所也非止一家,当鉴定人员不再固有科学精神的时候,“科学证据”也就不再科学。

三是人为疏失。2003年11月23日,在北京召开的首届国际法庭DNA证据研讨会上,有专家坦言:我国一些地区的公安司法机关,在DNA鉴定方面存在诸多问题,使安全有效使用这项技术受到限制。DNA技术虽然具有高度精确性,但其本身并不能自动转化为客观证据,需要由鉴定人进行采样、实验、对比、分析及数据解释,然后才能得出结果。上述任何一个环节出错,都可能降低DNA证据的准确性,造成DNA证据不但无助于确认真相,反而会导致错案发生。此外,有人故意布局来迷惑办案人员,诱使其得出错误结论。更令人担忧的是,已经发生有人利用DNA技术为自己脱罪,在美国密尔沃基市,安东宁·特纳被指控犯 *** 罪,正在羁押中等待审判,就在其羁押期间,狱外发生另一起谋杀案。警方搜集到的证据证明这两起案件的实物证据的DNA图谱完全相同。似乎证明安东宁·特纳是无辜的。后来查明,安东宁·特纳将 *** 样本投送出监,其亲属花了50美元收买一个女子,让她声称被 *** 且白日多人围奸,安东宁·特纳试图用这种 *** 误导侦查人员,为自己赢得无罪判决。DNA既可转移来为自己脱罪,也可转移用来陷害他人,无心造成的转移也会使无辜的人陷入讼累,办案人员若缺乏明察,盲从DNA鉴定意见,就可能造成冤枉无辜或者放纵罪犯的结果。

由于担心陪审团会被误导,一位加拿大法官“不允许DNA专家去证明随机匹配的可能性——害怕陪审团将会根据这种可能性简单地认为被告人是有罪的而不是将之与其他证据一同考虑”。但是,更多的人对DNA证据抱有一种不加警惕的迷信态度。在我国,直到现在,警告DNA鉴定可能存在错误的声音还不够响亮,错案就潜伏在对这种“科学证据”的迷信和盲从之中。二力河蟹相信,把在中国居住的居民DNA全部录取,登记在公安系统,不论什么案件都可以轻松破解。

迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中 *** 入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。

基因工程的前景科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。

生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。

生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。

美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。

人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,之一只经过基因改造的老鼠诞生;1996年,之一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。

人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色 *** 置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。

科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,更大可能地预防疾病。

人类基因工程的开展使破译人类全部DNA指日可待。

信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。

人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯·克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具 *** 置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分之一世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。

继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。

基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是之一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。

基因工程大事记

1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。

1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。

1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。

1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。

1969年 科学家成功分离出之一个基因。

1980年 科学家首次培育出世界之一个转基因动物转基因小鼠。

1983年 科学家首次培育出世界之一个转基因植物转基因烟草。

1988年 KMullis发明了PCR技术。

1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。

1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。

1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家之一次绘出多细胞动物的基因组图谱。

1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。

1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。

2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。

2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。

2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。

2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。

2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。

2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。

科学家首次公布人类基因组草图“基因信息”。

基因研究 各国争先恐后 基因时代的全球版图

让我们看一下在新世纪到来时,世界各国的基因科学研究状况。

英国:早在20世纪80年代中期,英国就有了之一家生物科技企业,是欧洲国家中发展最早的。如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。

德国:德国 *** 认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款15亿马克,成立了3个生物技术研究中心。此外, *** 还计划在未来5年中斥资12亿马克,用于人类基因组计划的研究。1999年德国研究人员申请的生物技术专利已经占到了欧洲的14%。

法国:法国 *** 在过去10年中用于生物技术的资金已经增加了10倍,其中最典型的项目就是1998年在巴黎附近成立的号称“基因谷”的科技园区,这里聚集着法国最有潜力的新兴生物技术公司。另外20个法国城市也准备仿照“基因谷”建立自己的生物科技园区。

西班牙:马尔制药公司是该国生物科技企业的代表,该公司专门从海洋生物中寻找抗癌物质。其中更具开发价值的是ET-743,这是一种从加勒比海和地中海的海底喷出物中提取的红色抗癌药物。ET-743计划于2002年在欧洲注册生产,将用于治疗骨癌、皮肤癌、卵巢癌、乳腺癌等多种常见癌症。

印度:印度 *** 资助全国50多家研究中心来收集人类基因组数据。由于独特的“种姓制度”和一些偏僻部落的内部通婚习俗,印度人口的基因库是全世界保存得最完整的,这对于科学家寻找遗传疾病的病理和治疗 *** 来说是个非常宝贵的资料库。但印度的私营生物技术企业还处于起步阶段。

日本:日本 *** 已经计划将明年用于生物技术研究的经费增加23%。一家私营企业还成立了“龙基因中心”,它将是亚洲更大的基因组研究机构。

新加坡:新加坡宣布了一项耗资6000万美元的基因技术研究项目,研究疾病如何对亚洲人和白种人产生不同影响。该计划重点分析基因差异以及什么样的治疗 *** 对亚洲人管用,以最终获得用于确定和治疗疾病的新知识;并设立高技术公司来制造这一研究所衍生出的药物和医疗产品。

中国:参与了人类基因组计划,测定了1%的序列,这为21世纪的中国生物产业带来了光明。这“1%项目”使中国走进生物产业的国际先进行列,也使中国理所当然地分享人类基因组计划的全部成果、资源与技术。

基因工程与农牧业、食品工业

运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。

1转基因鱼

生长快、耐不良环境、肉质好的转基因鱼(中国)。

2转基因牛

乳汁中含有人生长激素的转基因牛(阿根廷)。

3转黄瓜抗青枯病基因的甜椒

4转鱼抗寒基因的番茄

5转黄瓜抗青枯病基因的马铃薯

6不会引起过敏的转基因大豆

7超级动物

导入贮藏蛋白基因的超级羊和超级小鼠

8特殊动物

导入人基因具特殊用途的猪和小鼠

9抗虫棉

苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。

[编辑本段]基因工程与环境保护

基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。

利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。

基因工程与环境污染治理

基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。

(通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。)

基因治疗可待 医学革命到来

“基因”释意 现在我们通用的“基因”一词,是由“gene”音译而来的。基因就是决定一个生物物种的所有生命现象的最基本的因子。科学家们认为这个词翻译得不仅音顺,意义也贴切,是科学名词外语汉译的典范。基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。

用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。

我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。

无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。

可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。

[编辑本段]基因工程将使传统中药进入新时代

5月13日 13日参加“中药与天然药物”国际研讨会的中国专家认为,转基因药用植物或器官研究、有效次生代谢途径关键酶基因的克隆研究、中药DNA分子标记以及中药基因芯片的研究等,已成为当今中药研究的热点,并将使传统中药进入一个崭新的时代。

据北京大学天然药物及仿生学药物国家重点实验室副主任果德安介绍,转基因药用植物或器官和组织研究是中国近几年中药生物技术比较活跃的领域之一。

在转基因药用植物的研究方面,中国医学科学院药用植物研究所分别通过发根农杆菌和根癌农杆菌诱导丹参形成毛状根和冠瘿瘤进而再分化形成植株,他们将其与栽培的丹参作了形态和化学成分比较研究,结果发现毛状根再生的植株叶片皱缩、节间缩短、植株矮化、须根发达等;而冠瘿组织再生的植株株形高大、根系发达、产量高,丹参酮的含量高于对照,这对丹参的良种繁育,提高药材质量具有重要意义。

果德安说,研究中药化学成分的生物合成途径,不仅可以有助于这些化学成分的仿生合成,而且还可以人为地对这些化学成分的合成进行生物调控,有利于定向合成所需要的化学成分。国内有关这方面的研究已经开始起步。

据了解,中国在中药研究中生物技术应用方面的研究已经渐渐兴起,有些方面如药用植物组织与细胞培养,已积累了二三十年的经验,理论和技术都相当成熟,而且在全国范围内已形成了一定的规模。其中,中药材细胞工程研究正处于鼎盛时期。

果德安介绍说,面对许多野生植物濒于灭绝,一些特殊环境下的植物引种困难等问题,中国科学工作者开始探索通过高等植物细胞、器官等的大量培养生产有用的次生代谢物。研究内容包括通过高产组织或细胞系的筛选与培养条件的优化和通过对次生代谢产物生物合成途径的调控等,达到降低成本及提高次生代谢产物产量的目的。

此外,近来利用植物悬浮培养细胞或不定根、发状根对外源化学成分进行生物转化的研究也在悄然兴起,并已取得了一定的进展。

不仅如此,科学工作者更加重视对次生代谢产物生物合成途径调控的研究。这些研究都取得了令人兴奋的成果,说明中国的药用植物的细胞培养已进入一个崭新的时代。

果德安认为,今后研究的主要方向应集中在价值大且濒危的药用植物的组织细胞培养;对次生代谢产物的产生进行调控;一些重要中药化学成分的生物转化。另外,还应该加强动物药的生物技术研究。

[编辑本段]基因工程与医药卫生

1基因工程药品的生产:

许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。

微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。

⑴基因工程胰岛素

胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。

将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%!

⑵基因工程干扰素

干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。

基因工程人干扰素α-2b(安达芬) 是我国之一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。

⑶其它基因工程药物

人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。

2基因诊断与基因治疗:

运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。

◆SCID的基因工程治疗

重症联合免疫缺陷(SCID)患者缺乏正常的人体免疫功能,只要稍被细菌或者病毒感染,就会发病死亡。这个病的机理是细胞的一个常染色体上编码腺苷酸脱氨酶(简称ADA)的基因(ada)发生了突变。可以通过基因工程的 *** 治疗。

基因工程——产更高效药物的转基因动物

转基因动物是一种个体表达反应系统,代表了当今时代药物生产的最新成就,也是最复杂、更具有广阔前景的生物反应系统。就通过转基因动物家畜来生产基因药物而言,最理想的表达场所是乳腺。因为乳腺是一个外泌器官,乳汁不进入体内循环,不会影响到转基因动物本身的生理代谢反应。从转基因动物的乳汁中获取的基因产物,不但产量高、易提纯,而且表达的蛋白经过充分的修饰加工,具有稳定的生物活性,因此又称为“动物乳腺生物反应器”。所以用转基因牛、羊等家畜的乳腺表达人类所需蛋白基因,就相当于建一座大型制药厂,这种药物工厂显然具有投资少、效益高、无公害等优点。

从生物学的观点来看,生物机体对能量的利用和转化的效率是当今世界上任何机械装置所望尘莫及的。因此,通过转基因动物来生产药物是迄今为止人们所能想象得出的最为有效、最为先进的系统。

转基因动物的乳腺可以源源不断地提供目的基因的产生(药物蛋白质),不但产量高,而且表达的产物已经过充分修饰和加工,具有稳定的生物活性。作为生物反应器的转基因运动又可无限繁殖,故具有成本低、周期短和效益好的优点。一些由转基因家畜乳汁中分离的药物蛋白正用于临床试验。

目前,我国在转基因动物的研究领域,已获得了转基因小鼠、转基因兔、转基因鱼、转基因猪、转基因羊和转基因牛。20世纪90年代,国家“863”高技术计划已将转基因羊——乳腺生物反应器的研究列为重大项目。

虽然目前通过转基因动物(家畜)——乳腺生物反应器生产的药物或珍贵蛋白尚未形成产业,但据国外经济学家预测,大约10年后,转基因运动生产的药品就会鼎足于世界市场。那时,单是药物的年销售额就超过250亿美元(还不包括营养蛋白和其他产品),从而使转基因动物(家畜)——乳腺生物反应器产业成为更具有高额利润的新型工业。

2000年12月25日,北京三只转基因羊的问世以及在此之前各种转基因蔬菜、水稻、棉花等,使人们对转基因技术备加关注,那么转基因技术到底是一种什么样的神秘技术呢?

北京市顺义区三高科技农业试验示范区的北京兴绿原生物科技中心总畜牧师田雄杰先生介绍说,转基因动物和转基因羊的意义,不在于羊本身,而是它们身上产出的羊奶可以提取α抗胰蛋白酶,它们中的每一只都可称为一座天然基因药物制造厂,价值连城。

中国工程院院士、上海儿童医院上海医学遗传研究所所长曾溢滔先生认为,转基因动物是指通过实验 *** ,人工地把人们想要研究的动物或人类基因,或者是有经济价值的药物蛋白质基因,通常称为外源基因,导入动物的受精卵(或早期胚胎细胞),使之与动物本身的基因组整合在一起,这样外源基因能随细胞的分裂而增殖,并能稳定地遗传给下一代的一类动物。

田雄杰先生介绍,制备转基因羊,就是将人的α抗胰蛋白酶基因通过显微操作注进母羊受精卵的雄性细胞核,并使之与羊本身的基因整合起来,形成一体,这种新的基因组可以稳定地遗传到出生的小羊身上。小山羊也成了人工创造的与它们母亲不同的新品系,它们的后代也将带有这种α抗胰蛋白酶基因。这个过程有些类植物的嫁接术。

制备转基因动物是项复杂的工作。目前,在转基因动物研制中,外源基因与动物本身的基因组整合率低,其表达往往不理想,外源基因应有的性质得不到充分表现或不表现。实验运动如牛、羊和猪的整合率一般为1%左右。这种情况的原因可能是多方面的,首先是目的基因的问题,不同的外源基因表达水平不相同,因每个个体而异;其次是外源基因表达载体内部各个部分的组合和连接是否合理等;还有一点更重要,就是外源基因到达动物基因组内整合的位置是否合理。科学家还弄不清楚整合在哪个伴置表达高,哪个位置表达低,人们还无法控制外源基因整合的位置,而只能是随机整合。因此,整合率低也就在所难免。

尽管转基因动物还有一些技术亟待解决,但是转基因动物研究所取得的巨大进展,特别是它在各个领域中的广泛应用,已经对生物医学、畜牧业和药物产业产生了深刻影响。

重庆亲子鉴定中心在哪里?重庆市亲子鉴定中心位于重庆市大渡口区。想要做亲子鉴定可以去当地正规的亲子鉴定中心。亲子鉴定分为司法亲子鉴定和隐私亲子鉴定,一般根据鉴定用于选择鉴定类型即可。

重庆亲子鉴定说明

一、 个人鉴定适用于只想了解亲子鉴定结果而并不打算把鉴定结果作为证据提供给司法机构的客户。

二、个人鉴定可匿名委托,无需提供身份信息,私密性较强,更有效地保护了个人隐私;也因此,个人鉴定是没有法律效力的,仅供客户自己了解结果。鉴定中心仅对委托人提供的样本负责。

三、个人鉴定操作流程便捷,被鉴定人可以选择来鉴定中心委托或者委托受理员上门受理,也可以委托人采集样本快递到鉴定中心。

四、虽然个人鉴定的委托流程相对简单,但是个人鉴定使用的仪器、试剂盒以及检测的 *** 和司法鉴定完全一样,准确率也完全一致。

重庆正规亲子鉴定收费标准以及材料准备:重庆亲子鉴定咨询机构预约:150-1301-(2478-

1、个人隐私亲子鉴定费用在2400元-3000元左右,本人可以到现场采集样本或是自行在家采集好匿名邮寄,需要样本:血痕、带毛囊头发、口腔拭子。

2、司法亲子鉴定费用在2400元到3000元左右,需要到达现场采样,带齐相关证件完全公开的,一般采集血痕样本。

3、无创胎儿亲子鉴定费用在5000元-5500元左右,孕妇抽取10ml静脉血,疑父样本与个人隐私采集样本一样即可。

亲子鉴定正常情况下是5-7天出鉴定结果,需要注意的是一般影响价格的是否加急鉴定速度以及样本的特殊性。重庆亲子鉴定中心在哪里?想要做亲子鉴定可以去当地正规的亲子鉴定中心。亲子鉴定分为司法亲子鉴定和隐私亲子鉴定,一般根据鉴定用于选择鉴定类型即可。

一、什么是亲子鉴定

亲子鉴定,又称亲权鉴定,是指应用医学、生物学和遗传学的理论和技术,通过对人类遗传标记进行检测,分析判断有争议的父母与子女之间是否存在血缘关系的法医学鉴定技术。 通俗地讲就是,确定孩子是不是亲生的。

上户口亲子鉴定到正规具备司法亲子鉴定资质的正规中心机构办理,要注意的是办理司法上户口亲子鉴定时必须要选择有《司法鉴定许可证》的这个给机构,否则亲子鉴定报告是不会被认可的。